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Abstract Increases in nitrogen (N) availability

can favor fast-growing invasive species over slow-

growing native species. One way to reduce N

availability is to add labile carbon (C) to the soil,

which can lead to microbial immobilization of plant

available N. This method has been used, with widely

varying degrees of success, to both study and control

plant invasions. One reason that C addition might not

work as expected is that N is not always the limiting

resource for plant growth. For example, if plant

growth is limited by water, changes in N availability

might have little effect on invasion. Here I ask

whether effects of C addition on N availability,

resident plant biomass, and invasion depend on water

availability in semi-arid mixedgrass prairie. Six

invasive species were seeded into plots treated with

a factorial combination of water (ambient or added)

and N (?C, control or ?N). Carbon addition reduced

capture of mineral N by resin probes (by an average

of 73%), and reduced biomass of resident species

(from 336 g m-2 to 203 g m-2), both with and

without added water. In contrast, because there was

little invasion in ambient-water plots, C addition

reduced invasion only in added-water plots. Given

added water, C addition reduced biomass of Centau-

rea diffusa by 95%, and prevented invasion by

Gypsophila paniculata and Linaria dalmatica. Mech-

anisms by which C addition reduced invasion varied

by species, with added C reducing the growth of

individual C. diffusa plants, but reducing numbers of

G. paniculata and L. dalmatica individuals.
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Linaria dalmatica (Dalmatian toadflax) �
Mixedgrass prairie � Nitrogen limitation �
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Introduction

Increases in nitrogen (N) availability have been linked

to plant invasions worldwide (Bobbink et al. 1998;

Smith et al. 1999; Daehler 2003). Such increases are

thought to favor fast-growing weedy and invasive

species over slower-growing native species (Chapin

1980; Davis et al. 2000; Blumenthal 2005). One

possible solution to this problem is to reduce plant-

available nitrogen by increasing the soil carbon (C):N

ratio, and thereby increasing microbial N immobiliza-

tion (McLendon and Redente 1992; Morgan 1994). For

research, as well as some restoration applications, this

has been accomplished through soil amendments

of C, generally sugar or sawdust. Results of these
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experiments have been mixed. Although there have

been a number of experiments in which C addition has

favored native over invasive species (McLendon and

Redente 1992; Young et al. 1997; Zink and Allen

1998; Paschke et al. 2000; Alpert and Maron 2000;

Baer 2003; Blumenthal et al. 2003; Perry et al. 2004;

Averett et al. 2004; Prober et al. 2005; Eschen et al.

2007), there also have been many cases in which C

addition had little effect on competition between

native and invasive species (Wilson and Gerry 1995;

Reever Morghan and Seastedt 1999; LeJeune and

Seastedt 2006; Corbin and D’Antonio 2004; Suding

et al. 2004; Vinton and Goergen 2006; Seastedt and

Suding 2007).

One reason that C addition might not work as

expected is that N is not always the limiting resource

for plant growth (Blumenthal et al. 2003). In partic-

ular, it is interesting to consider whether C addition

should influence invasion in arid and semi-arid envi-

ronments. If plant growth is limited by water

availability, changes in N availability might have little

effect on invasion. Conversely, if arid and semi-arid

ecosystems are often co-limited by N and water

(Hooper and Johnson 1999), C addition could strongly

influence invasion. Among the C-addition studies that

have been conducted in arid and semi-arid ecosystems,

results have varied widely. Studies have found C

addition to have little effect (Doescher et al. 1990;

Miller et al. 1991; Huddleston and Young 2005), to

reduce N or overall plant growth (Wilson and Gerry

1995; Horn and Redente 1998; Reever Morghan and

Seastedt 1999; LeJeune et al. 2006; Seastedt and

Suding 2007), to inhibit invasive species (Young et al.

1998; Monaco et al. 2003; Beckstead and Augspurger

2004), accelerate succession (McLendon and Redente

1992; Paschke et al. 2000), or favor native over

invasive species (Young et al. 1997). To date however,

there have been no studies to explicitly test whether

effects of C addition in arid or semi-arid environments

depend on water availability.

The semi-arid mixedgrass prairie comprises 38% of

the remaining grassland in North America. Although

much of the mixedgrass prairie is relatively intact,

invasive plants cause serious problems for both rural

communities and biological diversity (Stohlgren et al.

1998; DiTomaso 2000). Many of the most problematic

invaders are perennial forbs (LeJeune and Seastedt

2001). For example, Euphorbia esula reduces both

species richness and productivity of native species

(Belcher and Wilson 1989). As a result, it costs an

estimated $129 million annually in direct management

costs, reduced forage production, and reduced land

value, in four states within the mixedgrass prairie

region: Montana, North Dakota, South Dakota and

Wyoming (Leitch et al. 1996). Similarly, invasive

Centaurea species reduce forage for wildlife, and cost

Montana livestock producers an estimated $42 million

annually (Trammell and Butler 1995). Increases in N

availability, due in part to N deposition (Kochy and

Wilson 2001), have been hypothesized to increase the

success of such species in mixedgrass prairie (LeJeune

and Seastedt 2001). Attempts to reduce invasibility by

reducing N availability in mixedgrass prairie, how-

ever, have met with little success (Wilson and Gerry

1995; Suding et al. 2004; LeJeune et al. 2006; Seastedt

and Suding 2007).

Our objectives in this study were (1) to test

whether effects of C addition on N availability, plant

growth, and invasion depend on water availability in

a semi-arid environment, and (2) to determine how C

and N addition influence invasion by several invasive

plant species in intact mixedgrass prairie.

Materials and methods

Study site

We conducted the study at the USDA-ARS High

Plains Grassland Research Station (HPGRS), west of

Cheyenne, Wyoming. The HPGRS is at the southern

end of the Northern Mixedgrass Prairie (41�N,

104�W; Schuman et al. 1999; LeCain et al. 2000).

Elevation at the HPGRS is 1,930 m, mean annual

precipitation is 38 cm, and there are an average of

127 frost-free days per year. Average temperatures in

summer and winter are 18�C and -2.5�C, respec-

tively. The resident plant community is dominated by

native species, including cool-season graminoids (C3)

such as Pascopyrum smithii (Rydb.) A. Love

(western wheatgrass), Stipa comata (needle-and-

thread) Trin and Rupr, and Carex duriuscula C.A.

Mey., a warm-season (C4) grass Bouteloua gracilis

(H.B.K.) Lab. Ex Steud (blue grama), and a diverse

array of forbs and subshrubs. The soils are mixed,

mesic, Aridic Argiustolls; the soil series is an

Ascalon sandy loam (Schuman et al. 1999). Although

the site was not grazed during the study, it had been
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grazed at a moderate stocking rate (6.29 ha cow-calf

pair-1) for 8 years prior to the study.

Experimental design and treatment applications

To examine the interactive effects of water and N

availability on invasion, we seeded six invasive

species into intact, resident communities, and manip-

ulated water and N or C. Treatments included two

water treatments (ambient, added) crossed with three

N treatments (?C, control, ?N). Treatments were

arranged in a blocked, split-plot design, with three

blocks, each containing one replication of all treat-

ments. N treatments were randomly assigned to

subplots within water-manipulation whole plots.

Subplots measured 2.95 m 9 1.00 m and were sep-

arated by undisturbed buffers zones at least 0.35 m in

width. Each subplot was comprised of two

1.3 m 9 1.0 m treated areas, separated by a 0.35 m

walkway, each of which received seed of all six

invasive species.

We added water during both the winter, using snow

fences, and the summer, using irrigation. Snow was

increased with three lath and wire snow fences. Each

fence was 1 m high by 25 m long and was oriented

perpendicular to the prevailing winter winds. Snow

accumulation behind the fences averaged 50 cm.

Water-manipulation plots were 2.95 9 6.40 m.

Added-water plots were located in the zone of max-

imum snow accumulation, 1 m to the leeward side of

the fence. Plots receiving ambient snowfall were

located 20 m to the windward side of each snow fence.

During the growing season, fences were removed to

equalize air movement between ambient-water and

added-water plots. We increased summer precipitation

in added-water plots by adding 50% of the 30-year

average monthly precipitation in weekly increments

from mid May through mid August. During the first

month of watering in 2005, we mistakenly applied only

25% of the 30-year average. Water was applied with a

watering wand powered by a battery powered pump.

Nitrogen treatments were applied to 2.95 m by

1.00 m subplots within the larger water-manipulation

plots. Carbon-addition plots received a total

2,948 g m-2 of dextrose (1,167 g m-2�C) over the

course of the experiment. This quantity of C is

intermediate among the C-addition quantities used in

previous studies finding strong effects on vegetation

(e.g., Baer 2003; Blumenthal et al. 2003; Prober et al.

2005; Eschen et al. 2007; Seastedt and Suding 2007). I

used dextrose as a C source because it is produced

from corn, and can be less expensive than the more

commonly used sucrose. Preliminary experiments

have shown that dextrose and sucrose amendments

have similar effects on N availability in rangeland

soils under laboratory conditions (Mark Paschke,

unpublished data). We applied dextrose in seven

increments, on 1 April, 20 May, 12 August, 21

October, and 19 November in 2004, and on 5 May and

5 July in 2005. At each date, we applied 416 g m-2 of

powdered dextrose (Sigma, St. Louis, MO) by hand.

To wash the dextrose off above-ground plant tissue,

we then sprayed the plots with 0.5 l of water. The same

amount of water was sprayed onto plots not treated

with C. N-addition plots received 2.63 g m-2 of N

annually, a rate similar to the highest rates of N

deposition measured in a survey of the Canadian

Mixedgrass Prairie (Kochy and Wilson 2001). We

divided fertilizer into two applications each year. In

April 2004, August 2004, May 2005, and July 2005 we

applied 3.9 g m-2 of 33.5-0-0 ammonium nitrate

fertilizer to N-addition plots. For each plot, fertilizer

was dissolved in 0.5 l of water and sprayed on using a

handheld sprayer. The same amount of water was

sprayed onto plots not treated with N.

Study species and seed addition

We seeded six invasive species into all plots: Bromus

tectorum L. (cheatgrass), Centaurea diffusa Lam.

(diffuse knapweed), Cirsium arvense (L.) Scop. (Can-

ada thistle), Euphorbia esula L. (leafy spurge),

Gypsophila paniculata L. (baby’s breath), and Linaria

dalmatica (L.) P. Mill. (Dalmatian toadflax). These

species all invade intact mixedgrass prairie, and were

all present at the HPGRS prior to this study. C. diffusa,

C. arvense, E. esula, and L. dalmatica are listed as

noxious weeds in Wyoming (http://plants.usda.gov).

Bromus tectorum, while most problematic in the

Intermountain West, is also common in Wyoming.

Gypsophila paniculata is on the noxious weed lists for

both California and Washington State. It was planted as

an ornamental at the HPGRS and has been spreading

into adjacent mixedgrass prairie.

Two 0.7 9 1.0 m seeded areas were located

within each subplot, surrounded by 0.15 m buffer

areas that received the same water and N treatment as

seeded areas. To make it possible to repeatedly find
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and measure seedlings of individual species, we

seeded invasive species in rows oriented perpendic-

ular to the snow fence. Each species was sown into

two randomly located 11.66 cm 9 100 cm rows

within each subplot (one in each seeded area). To

increase safe sites for germination, we lightly

disturbed half of each row (5.83 cm 9 100 cm) to a

depth of \3 cm using a pointed hoe. We added seed

by hand in late November 2003.

Measurement of soil water, mineral N, plant

density and plant biomass

We measured the effects of water addition on

volumetric soil water content with 30 cm deep

CS616 time-domain reflectrometry probes attached

to CR10X data loggers (Campbell Scientific, Logan

Utah, USA). We placed probes in control and added-

water plots within two of the three blocks, for a total

of four probes. Probes were installed outside of areas

planted with weeds or treated with N or C. We

calibrated the probes using gravimetric water content

data collected over the course of the study.

We measured available NO3
- and NH4

? with

Plant Root Simulator (PRS)TM resin probes (Western

Ag Innovations, Saskatoon, SK, Canada). Four cation

and four anion probes were installed in each subplot.

Probes were located in the buffer area that was

subjected to experimental treatments but not seeded

with invasive species. The 17.5 cm2 resin membranes

of the probes were placed vertically, between 2 and

7.6 cm below the soil surface, the zone of maximum

root activity (Schuman et al. 1999; LeCain et al.

2006). Due to initial concerns that the probes would

become saturated, we left them in the ground for only

1 month the first year, inserting them May 27, and

removing them June 23. Because 2004 probes were

not close to being saturated, we extended this period

in 2005, inserting them May 17 and removing them

August 4. Probes were cleaned with deionized water

immediately after being removed from the soil and

shipped to Western Ag Innovations for analysis. At

Western Ag, probes were eluted with 17.5 ml of

0.5 M HCl for 1 h, and inorganic N (NH4
?-N and

NO3
--N) was determined colorimetrically, using a

Technicon Autoanalyzer II (Hangs et al. 2004).

We counted all seedlings of each invasive species

in early April, early May, late June and late

September in 2004 and in late July 2005. Seedlings

were counted separately in disturbed and undisturbed

sides of the row during 2004. By 2005 it was no

longer possible to assign seedlings to disturbed or

undisturbed areas. Invasive species were harvested

immediately after the final count. A resident popu-

lation of L. dalmatica in one of the whole plots made

it difficult to be sure that plants observed in

September 2004 and July 2005 had been added as

seed. For this species, therefore, analyses of data

from these dates included only two whole plots. We

harvested resident species within seeded areas fol-

lowing the invasive species harvest, in early August

2005. We separately clipped all remaining monocots

and dicots in one randomly located 50 9 37.5 cm

frame within each planted area. All plants were dried

at 60�C for 3 days prior to weighing.

Data analysis

We used JMP version 5 (SAS Institute 2002) for all

analyses. When necessary, data were transformed to

meet model assumptions, using either log10 or square

root transformations. Mineral N captured by resin

probes, and resident plant biomass data, were analyzed

using models including Block, Water (ambient,

added), N (?C, control, ?N), and appropriate interac-

tions, with Block and Block 9 Water as random

effects. Because resin probe burial durations differed

between 2004 and 2005, mineral N data from each year

were analyzed separately. Volumetric water content

was analyzed with a repeated measures model includ-

ing Block, Water, Date, and interactions, with Block

and Block 9 Water as random effects.

Because added invasive species were rarely

observed within plots without added water, resulting

in a large number of zeros, we tested for effects of

Water on invasive species biomass using a Welch’s

nonparametric t-test. Effects of N on invader biomass

within added-water plots were then tested using one-

way ANOVAs including Block and N. Effects of N

on invader numbers within added-water plots were

tested using repeated measures models that included

Block, N, Date, and interactions, with Block and

Block 9 N as random effects. To examine effects of

disturbance (only measured in 2004) on invader

numbers, separate models were used that included

Block, N, Disturbance, Date, and interactions, with

Block, Block 9 N, and Block 9 N 9 Disturbance as

random effects. In all ANOVAs, appropriate error
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terms (see results for degrees of freedom) were used

to test for whole-plot and sub-plot effects. Where

significant effects of N were found, Tukey HSD

means separation tests were used to test for signif-

icant differences among N treatments.

Results

Precipitation and mineral N

Precipitation was 84% of the long-term average for the

HPGRS over the course of the experiment, from

November 2003 to August 2005. The winter of 2003–

2004, immediately following invasive species seeding,

was quite dry, with November–April precipitation

being only 60% of average. November 2004–April

2005 precipitation was 83% of average. May–October

precipitation in 2004 was 87% of average, and May–

August precipitation in 2005 was 98% of average.

Water addition increased average volumetric soil

water content from 0.12 to 0.17 over the course of

the study (F1,2 = 558, P = 0.027).

In 2004, the quantity of mineral N (NH4
?-N plus

NO3
--N) captured by resin probes was significantly

affected by water addition (F1,2 = 60, P = 0.016), N

treatment (F2,8 = 33, P = 0.0001) and the interac-

tion between water addition and N treatment

(F2,8 = 9.2, P = 0.0085; Fig. 1). Post-hoc analyses

revealed that mineral N was influenced by N

treatment only without water addition (F2,4 = 56,

P = 0.0012), and was lower in C-addition plots

without added water than in control plots. In 2005,

mineral N was significantly affected by water addi-

tion (F1,2 = 19, P = 0.05) and N treatment

(F2,8 = 27, P = 0.0003) but not their interaction

(Fig. 1). Means comparisons showed that C addition

significantly reduced probe-N, but that N-addition

had no significant effect on probe-N (Fig. 1).

Resident species

Total above-ground biomass of resident species

increased with N addition and decreased with C

addition (F2,8 = 54, P \ 0.0001; Fig. 2). Resident

biomass also increased with water addition (F2,8 = 30,

P \ 0.032). Carbon addition reduced biomass of

resident monocots (F2,8 = 41, P \ 0.0001), com-

prised primarily of perennial grasses and Carex

duriuscula (Fig. 2). Although N treatment also influ-

enced resident dicots (F2,8 = 5.4, P = 0.032),

comprised primarily of perennial forbs and subshrubs,

dicot biomass in C-addition plots differed only from

that in N-addition plots and not from that in control

plots. Water addition had no effect on monocot or dicot

biomass, either alone or in conjunction with C or N

addition.

Invasive species

Only three of the six added invasive species success-

fully invaded the experiment: Centaurea diffusa,

Gypsophila paniculata, and Linaria dalmatica.

Results therefore will be limited to these species.

Fig. 1 Mineral nitrogen (NH4
?-N plus NO3

--N) extracted

from resin probes as a function of water and nitrogen

treatment: added nitrogen (?N), no amendment (Control), or

added sugar (?C). Error bars are ?1 SE. Note the different y-

axes for 2004 and 2005, which reflect different burial

durations. Water addition significantly reduced mineral nitro-

gen in both years. Nitrogen treatment significantly affected

mineral nitrogen with ambient water in 2004, and with ambient

and added water in 2005. In each case, ?C plots had

significantly lower mineral nitrogen than ?N and Control

plots, based on Tukey HSD (P \ 0.05)
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Populations of these three invasive species persisted 3

and 4 years after the initial seeding, reestablishing

after the harvest via resprouting or germination.

The invasive species attained little or no biomass in

plots without water addition. Average above-ground

biomass of C. diffusa, G. paniculata, and L. dalmatica

in ambient-water plots was 0% (P = 0.0021), 0.83%

(P = 0.0017), and 1.0% (P = 0.018) of that in added-

water plots, respectively.

Given added water, and therefore invasive species,

N treatment significantly affected above-ground bio-

mass of C. diffusa (F2,9 = 13, P = 0.018), G.

paniculata (F2,9 = 9.2, P = 0.032), and L. dalmatica

(F2,6 = 243, P = 0.0041). Specifically, C addition

dramatically reduced biomass of all three invasive

species, and N addition increased biomass of

L. dalmatica more than fivefold (Fig. 3).

Results for plant numbers in added-water plots

were less consistent among invasive species (Fig. 4).

N treatment had no effect on C. diffusa numbers. In

contrast, N treatment did influence G. paniculata

numbers (F2,4 = 12, P = 0.020), with many fewer

plants in C-addition than control plots. For L.

dalmatica numbers, both the main effect of N

(F2,4 = 7.5, P = 0.045) and its interaction with

Date (F2,18 = 6.5, P = 0.0005) were significant. In

post-hoc, within-date analyses, N influenced L.

dalmatica numbers in both September 2004 (F2,2 =

107, P = 0.0092), and August 2005 (F2,2 = 208,

P = 0.0048), with fewer plants in C-addition than in

control plots. N addition did not influence plant

numbers of any of the invasive species.

Effects of C addition on the size of individual plants

could be examined only for C. diffusa, because it was

the only species to survive in sufficient numbers in all

N treatments. The average size of individual C. diffusa

plants was significantly affected by N treatment

(F2,4 = 58, P = 0.0011); plant size was lower in

Fig. 2 Biomass of resident species, including monocots (gray

bars) and dicots (black bars) as a function of water and nitrogen

treatment: added nitrogen (?N), no amendment (Control), or

added sugar (?C). Error bars are ?1 SE of total resident

biomass. Effects of nitrogen treatment were significant for total

resident biomass, resident dicot biomass, and resident monocot

biomass. In pair-wise comparisons, biomass in ?C plots was

lower than that in Control and ?N plots for total resident

biomass and monocot biomass, and lower than that in ?N plots

for dicots. Biomass in ?N plots was higher than that in Control

plots only for total resident biomass. Effects of water were

significant only for total resident biomass

Fig. 3 Biomass of seeded invasive species in added-water

plots as a function of N treatment: added N (?N), no

amendment (Control), or added sugar (?C). Bars with different

letters are significantly different based on Tukey HSD

(P \ 0.05). To obtain biomass/m2, per-plot biomass was

divided by the area within which each species was planted

rather than the entire area of the plot, and is therefore not

directly comparable to the resident species biomass values in

Fig. 2
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C-addition plots (0.10 g m-2) than in Control

(0.76 g m-2) or N-addition (1.3 g m-2) plots.

Disturbance increased the numbers of all three

species in added-water plots (P \ 0.001 in all cases),

but did not interact with either Date or N treatment.

All three species were able to establish without

disturbance in added-water plots, however. In

September 2004, surviving seedling numbers per plot

in disturbed and undisturbed areas, respectively, were

11 and 29 for C. diffusa, 4 and 19 for G. paniculata,

and 5 and 35 for L. dalmatica.

Discussion

This study shows that C addition can reduce N

availability, resident plant biomass, and invasibility

of northern mixedgrass prairie. Carbon addition

reduced N availability both with water addition (in

2004) and without water addition (in both years;

Fig. 1), suggesting that microbes were C-limited even

with ambient, and somewhat lower than average,

levels of precipitation. These results are in accord

with those of several other studies in which addition

of sucrose (Wilson and Gerry 1995; Suding et al.

2004; LeJeune et al. 2006) or sucrose and gypsum

(Seastedt and Suding 2007) reduced N availability in

mixedgrass prairie. Other studies have found that C

addition can reduce N availability in even more arid

ecosystems (McLendon and Redente 1992; Young

et al. 1997; Paschke et al. 2000). In this study, water

addition also reduced N availability, but the mech-

anism behind this effect is not clear. Added water

may have stimulated N uptake by plants or microbes,

or have leached mineral N below the 7.6 cm probe

depth prior to probe insertion in late May.

Like N availability, above-ground biomass of

resident plants was reduced by C addition both with

and without water addition (Fig. 2). Thus, even with

somewhat lower than average precipitation in this

semi-arid grassland, C addition still had strong effects

on plant growth. It seems likely that effects of C

addition were mediated by reduced N availability, but

it is also possible that reduced availability of other

essential nutrients was involved. Both N addition and

water addition increased resident plant biomass,

results that are qualitatively similar to those observed

by Lauenroth et al. (1978) in the nearby shortgrass

steppe, and in accord with the suggestion that N and

water may co-limit productivity in many semi-arid

ecosystems (Hooper and Johnson 1999).

C addition had stronger effects on invasive species

biomass than on resident plant biomass, reducing

biomass of C. diffusa by 95%, and preventing invasion

by G. paniculata and L. dalmatica (Fig. 3). These

results were observed only with added water, suggest-

ing that low water availability can limit the influence of

C addition on invasion (the direct effects of summer

and winter water addition on invasion are explored in

detail in a separate paper; Blumenthal et al. 2008).

Because invasive species were largely absent in

ambient-water plots, however, it was not possible to

fully examine the interaction between water addition

and C addition. Furthermore, the focus on invasive

species recruitment, which was very sensitive to water,

may have accentuated the importance of water, and

therefore the interaction between water and C addition

Fig. 4 Invasive species numbers (?/-1 SE) in added-water

plots as a function of Date and N treatment: added N (?N), no

amendment (Control), or added sugar (?C). Only Date

significantly influenced C. diffusa density. Both Date and N

treatment influenced G. paniculata density, with lower density

in ?C than in Control plots. N treatment and Date 9 N

treatment influenced L. dalmatica density, with lower density

in ?C than in Control plots on the last two sampling dates
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in this study. Effects of C addition on competition

between established invasive and native species might

be less sensitive to water availability.

Multiple factors might explain the relatively strong

effects of C addition on invasive species in added-

water plots. First, the invasive species may have had

higher N requirements for growth than the resident

species. Carbon addition had large effects on

C. diffusa growth, reducing per-plant biomass by

87%. Second, unlike most resident species, invasive

species had to establish from seed during the course

of the experiment. Establishing seedlings may have

been particularly sensitive to low N availability.

Although most invasive species germination occurred

shortly before the first C was added, seedling

mortality was quite high, and C addition greatly

reduced the number of surviving seedlings of both

G. paniculata and L. dalmatica (Fig. 4). Furthermore,

C addition reduced seedling numbers in both dis-

turbed and undisturbed areas, indicating that even

with disturbance, lower N availability can influence

recruitment. These results are in accord with several

other studies that have found C addition to reduce

invasive species recruitment (Young et al. 1998;

Beckstead and Augspurger 2004; Seastedt and Sud-

ing 2007). Such reductions may be particularly

problematic for the short-lived invasive forbs in this

experiment, which rely on frequent recruitment.

The present study is one of several that have

examined effects of C addition on C. diffusa in

mixedgrass prairie. In experiments involving resident

populations of C. diffusa, sucrose addition did not

affect C. diffusa biomass (LeJeune et al. 2006), and

sucrose plus sawdust addition reduced C. diffusa

biomass by 40%, but affected other resident species

similarly (Reever Morghan and Seastedt 1999). A

study of C. diffusa transplants into mixedgrass prairie

found that sucrose addition reduced C. diffusa biomass

by 75%, and had similarly large effects on trans-

planted native species (Suding et al. 2004). Finally, an

experiment in which C. diffusa was established from

seed found that sucrose addition reduced C. diffusa

biomass by 81% but only when resident grass

competitors were removed (Seastedt and Suding

2007). Among the three invasive species I examined,

C. diffusa was the least affected by C addition, but

its biomass was still reduced by 95%. The present

study is the first to find that C addition reduced

biomass of C. diffusa more than that of native species,

but is in other ways quite similar to the study by

Seastedt and Suding (2007). Both studies involved

addition of C. diffusa seed and relatively high levels of

C to mixedgrass prairie. Further, both studies found

that C addition influenced C. diffusa only when

conditions were particularly favorable for C. diffusa

growth, due to the removal of competitors or the

addition of water. Together, these results suggest that

although C. diffusa can survive under conditions of

low N availability, limited N can reduce its ability to

thrive in environments high in other resources.

In sum, this study suggests that reducing N avail-

ability can inhibit invasion even in semi-arid

ecosystems, and that effects of N are most likely to

be observed during wet periods. It also suggests that the

degree to which effects of C addition interact with

water availability may depend on the sensitivity of

different processes to water limitation. Given sufficient

water for invasion, C addition inhibited or precluded

invasion. Without added water, however, invasive

species recruitment was strongly water-limited, which

reduced the effect of C addition on invasion. In

contrast, neither N availability nor resident species

biomass were strongly limited by water, and water did

not influence their responses to C addition.
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